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Outside of the view space: The aerial vehicles outside of the view space are

aggregated as a distribution for predicting the arrivals in the view space at the A Find a collision free path for each vehicle.

A All aerial vehicles adopt the same policy to reduce the dimensionality.
CONCLUSIONS

A We proposed a multiresolution medield multiagent reinforcement
learning for collision avoidance.

A We implemented the algorithm with CNN and Ac@ritic, where CNN
IS used to extract features from observations and the actarc
method is used to reduce the varianctlearning.

A Each vehicle make its own decisions based on its current state and the
state of its view space.
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